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Abstract

Coal seam degasification and its success are important for controlling methane, and thus for the 

health and safety of coal miners. During the course of degasification, properties of coal seams 

change. Thus, the changes in coal reservoir conditions and in-place gas content as well as methane 

emission potential into mines should be evaluated by examining time-dependent changes and the 

presence of major heterogeneities and geological discontinuities in the field. In this work, time-

lapsed reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/Blue Creek 

seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from gas and water 

production history matching and production forecasting of vertical degasification wellbores. These 

properties were combined with isotherm and other important data to compute gas-in-place (GIP) 

and its change with time at borehole locations. Time-lapsed training images (TIs) of GIP and GIP 

difference corresponding to each coal and date were generated by using these point-wise data and 

Voronoi decomposition on the TI grid, which included faults as discontinuities for expansion of 

Voronoi regions. Filter-based multiple-point geostatistical simulations, which were preferred in 

this study due to anisotropies and discontinuities in the area, were used to predict time-lapsed GIP 

distributions within the study area. Performed simulations were used for mapping spatial time-

lapsed methane quantities as well as their uncertainties within the study area.

The systematic approach presented in this paper is the first time in literature that history matching, 

TIs of GIPs and filter simulations are used for degasification performance evaluation and for 

assessing GIP for mining safety. Results from this study showed that using production history 

matching of coalbed methane wells to determine time-lapsed reservoir data could be used to 

compute spatial GIP and representative GIP TIs generated through Voronoi decomposition. 

Furthermore, performing filter simulations using point-wise data and TIs could be used to predict 

methane quantity in coal seams subjected to degasification. During the course of the study, it was 

shown that the material balance of gas produced by wellbores and the GIP reductions in coal 

seams predicted using filter simulations compared very well, showing the success of filter 

simulations for continuous variables in this case study. Quantitative results from filter simulations 
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of GIP within the studied area briefly showed that GIP was reduced from an initial ~73 Bcf 

(median) to ~46 Bcf (2011), representing a 37 % decrease and varying spatially through 

degasification. It is forecasted that there will be an additional ~2 Bcf reduction in methane 

quantity between 2011 and 2015. This study and presented results showed that the applied 

methodology and utilized techniques can be used to map GIP and its change within coal seams 

after degasification, which can further be used for ventilation design for methane control in coal 

mines.
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1 Introduction

Current US regulations prohibit methane concentrations exceeding 1 % in an underground 

coal mine and 2 % in bleeder systems. Ventilation of underground coal mines with an 

adequate amount of diluting airflow is important in order to prevent formation of explosive 

methane-air mixtures. Coal-seam degasification prior to coal mining is an indispensable 

practice for reducing gas-in-place (GIP) in the coal and thereby for supplementing 

ventilation to control methane emissions during mining (Dougherty and Karacan 2011; 

Karacan et al. 2011). Effectiveness of degasification wells can be influenced by fluid-flow- 

and fluid-storage-related reservoir properties of coal seams. From a field perspective, a 

degasification plan should take the structural geology of the field and presence of multiple 

seams and their reservoir conditions into account in order to be effective. These seams can 

be overlying and underlying the main seam in a coal group and can act as potential sources 

of floor and roof emissions, respectively, during mining. Additionally, presence of major 

faults should be taken into consideration as they may affect uniform degasification of the 

field by creating reservoir compartmentalization (Karacan 2008). During degasification, 

reservoir properties of coal seams change. Therefore, determining temporal coal reservoir 

properties at spatial well locations are important for predicting high-flow-capacity areas of 

the reservoir and for estimating GIP and its change with time. Equally if not more important 

is the ability to determine the remaining GIP at intervening spaces between wellbores. This 

ability can greatly help assessing spatial locations of potential methane emissions into mines 

from different seams of the coal group and evaluating the locations of infill wells to remove 

additional gas to improve miner safety (Karacan 2008; Karacan et al. 2012).

Currently, GIP computations related to degasification performance in a coal seam and coal 

mine methane management objectives are performed by running laboratory tests on cores in 

order to determine gas content and sorption isotherms. GIP is then calculated for a unit 

volume of the coal seam based mainly on absorbed quantity by excluding free gas quantity 

since calculation of free gas requires porosity and water saturation data. In most cases, cores 

or laboratory analyses are not available for the spatial location of interest. In such instances, 

GIP in the area is assumed uniform based on calculations at a close location, if they exist. 

Current approaches to determine GIP is neither exact, nor provides information as to how it 

has changed in time and may change in the future. This paper presents a unique case study 
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and a novel approach demonstrated for the first time for spatially quantifying time-lapsed 

changes in GIP and its uncertainty through the use of production history matching and 

multiple-point geostatistics in a 12,900-acre area in Black Warrior Basin, Alabama (Karacan 

2013a). Since production history matching is the study of mimicking actual water and gas 

production data from wellbores by using theoretical solutions of flow and fluid storage in a 

reservoir, it can be used for determining coal reservoir properties, which can further be used 

to determine point-wise volumetric GIP at wellbore locations. This study is also the first to 

employ TIs (which were generated by using a systematic approach for coal seam 

degasification) and filter simulations for spatial modeling of time-lapsed GIP and its 

changes in multiple coal seams mining area in order to assess emission potentials from 

different horizons. This study was conducted in an area where both degasification and coal 

mining takes place in the Mary Lee coal group; that is, the New Castle, Mary Lee, Blue 

Creek, and Jagger coal seams. Time-varied reservoir properties of coals for initial (1987 and 

before), 1998, 2006, 2011, and 2015 time periods obtained from production history 

matching and rate forecasting (for 2015) of gas and water production from 86 degasification 

wells were used to compute GIP and its change at spatial well locations. These data were 

used to generate separate TIs at each date and for each coal seam using Voronoi 

decomposition to create a total of 27 TIs, which later were tested for their statistical and 

spatial representativeness of the original spatial data. Time-lapsed GIP data of each coal 

seam were stochastically simulated using filter-based geostatistical simulation that was 

specifically used in this work due to anisotropies and the presence of horst and graben-type 

normal faults, and also to capture the discontinuities they create as patterns with the help of 

TIs.

2 Study Area Description and the Procedure Leading to Geostatistical 

Simulations

In this paper, the intent is to calculate GIP and its time dependent changes in the Mary Lee 

group of coals for mapping these properties in the study area. However, for completeness, 

the background material is briefly described in the upcoming sections.

2.1 Mary Lee Coal Group of the Black Warrior Basin and the Specific Study Area

The Black Warrior basin is structurally complex, having multiple faults and fractures within 

the study area. The Black Warrior basin contains numerous northwest striking normal faults 

and joints which form horst and graben structures with displacements as much as 400 ft 

(McFall et al. 1986). Structural deformation in the general area is known to have a 

significant effect on the performance of coalbed methane wells, mining emissions, and 

hydrodynamics (Pashin 2007; Groshong and Pashin 2009; Pashin 2010). The majority of the 

Black Warrior basin coal-bearing strata of economic value are in the Pennsylvanian age 

Pottsville formation. In the Upper Pottsville formation, the Mary Lee coal group is most 

important due to ongoing coal mining and coal gas production activities. The Mary Lee coal 

group covers an interval of about 250 ft thick and includes the New Castle, Mary Lee, and 

Blue Creek and Jagger seams (Fig. 1). During coal mining, the Mary Lee and Blue Creek 

seams are usually mined together in areas where the parting layer is thin. Therefore, in this 
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work, they will be treated as a single coal unit, excluding thickness of parting, and will be 

termed as the Mary Lee/Blue Creek seam.

The coal mine located within the study area has recently started operating with the E1 panel 

(Fig. 2) in the Mary Lee coal group to extract the Blue Creek and Mary Lee seams (with a 

total thickness varying between 4 and 10.9 ft, and a mean of 6.6 ft) by longwall method. In 

the study area, the New Castle seam is at most 65 ft and the Jagger seam is at most 41 ft 

above and below the mining interval, respectively. These two seams will be within the 

fractured interval at the roof and floor of the mine during mining and after the panels are 

sealed, and will be potential methane emission sources from the roof and floor through 

mining-induced fractures. Therefore, the amount of methane in the mined seams, as well as 

in the New Castle and Jagger seams are important for predicting emissions during mining in 

order to effectively plan ventilation needs for mining safety.

2.2 Study Area, Production History Matching of Degasification Wells and Gas-in-Place

The study area, shown in Fig. 2, has 86 vertical boreholes, some of which started production 

as early as 1987. The majority of the wellbores have been in production since their start 

date, for about 6,000 days.

Figure 2 shows that there are five major fault lines in the study area. Mine panels are 

designed to take fault lines into consideration. It is not clear whether these faults are 

permeable or impermeable for cross flow or for vertical flow along the fault lines. The data, 

however, shows that the area is faulted as a horst and graben structure, and the blocks 

between faults are down-thrown with varying vertical distances up to 200 ft. These 

structural faults are not expected to have major impact on initial gas accumulation within the 

coal seams. However, with vertical displacements as much as 200 ft, it is clear that the faults 

are discontinuities for strata and for coal seams, and thus they may affect degasification 

efficiency of wells, decline rates, coal seam pressures, and gas quantity changes on both 

sides of faults during different stages of degasification (Karacan 2013a). As a result, 

longwall panels located at different positions with respect to fault lines and fault blocks may 

experience different levels of methane emissions as well (Karacan 2008, 2011).

Production history matching analyses of vertical degasification wells used in this study were 

completed using Fekete’s F.A.S.T. CBM™ software version 4.7 (Fekete Associates 2012). 

For modeling, pseudo-steady state (PSS) boundary-dominated solution—which ignores the 

initial transient period and assumes that effective drainage radii reached its boundaries—was 

used. For wellbores produced for so long, as the ones in this field, this is an acceptable 

assumption to analyze their production behavior. Production history matching is the study of 

production behavior of wellbores by using theoretical solutions of fluid flow and storage in a 

reservoir, developed for different boundary conditions. The main purpose of production 

history matching is to predict reservoir properties by using other ancillary information, such 

as geophysics, and expert knowledge regarding the flow regimes. In order to obtain reliable 

results though, completion parameters and production intervals of the wellbores as well as 

the geometry of the solution domain should be represented realistically. For each well and 

coal group, well productions were simulated starting from their first reported production 

date. Since the degasification start date (or production start date) of each well could be 
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different and are usually before 1987, the first date that defines the initial conditions of the 

coal seams predicted from each of the wellbores is termed initial in results in order to refer 

to the initial reservoir condition of coal seams prior to the start of degasification. Time-

dependent reservoir properties, as appropriate, were determined using history matching 

results for initials (prior to start of degasification), 1998, 2006, 2011, and 2015 (which was 

based on production forecasting) for all wells. Details of production history matching 

process can be found in Karacan (2013a). History matching of well productions through a 

PSS boundary-dominated solution enabled the prediction of reservoir properties of the New 

Castle, Mary Lee/Blue Creek, and the Jagger seams and their changes though time. These 

properties, in combination with isotherm measurements, could later be used for computation 

of volumetric GIP (absorbed and free gas) in individual seams at a given time (t) through 

volumetric GIP computation equations given in Saulsberry et al. (1996) and in Karacan 

(2013b). The change in GIP quantity at a given location between two time intervals due to 

degasification was obtained by subtracting the corresponding values of GIP.

The GIP calculations were performed for the model grids in which wellbores are located (a 

0.92-acre area) corresponding to each of the 86 degasification wells. Tables 1 and 2 give 

statistical measures of GIP calculations for borehole locations at all dates and the differences 

of GIP between consecutive dates, respectively. The statistical measures of differences given 

in Table 2 can be interpreted as the statistics of reduction in GIP at 86 wellbore locations 

due to degasification. From a mining-related methane-emissions point of view, the 

univariate statistical GIP data given in Table 1 refer to the potential amount of methane 

entering into the mine from the roof (New Castle), mined seam (Mary Lee/Blue Creek), and 

floor (Jagger) at a given date when 0.92 acres of Mary Lee/Blue Creek seam is mined, if 

GIP is assumed to be constant throughout the study area. Likewise, the GIP reduction 

statistics given in Table 2 refer to the reduction in methane quantity when 0.92 acres is 

mined. However, although point-wise data and evaluation of GIP and GIP differences can be 

helpful, this approach is average and does not present spatial differences between data 

locations. In the forthcoming sections, filter-based geostatistical simulation that was used in 

this work to establish spatial correlations and continuity and to assess the uncertainty of GIP 

and GIP difference data are discussed. Geostatistical modeling and simulations were 

conducted over the study area presented in Fig. 2.

3 Filter-Based Multiple-Point Geostatistical Simulation of Time-Lapsed Gas-

in-Place

The theory and in-depth review of geostatistical techniques and examples are given in 

Journel et al. (1998), Deutsch and Journel (1998), Webster and Oliver (2007), Leuangthong 

et al. (2008), Remy et al. (2009), Olea (2009), Wackernagel (2010), and Srivastava (2013). 

These techniques have been widely used for coal resource evaluation and mining also 

(Heriawan and Koike 2008; Olea et al. 2011; Karacan et al. 2012; Karacan and Goodman 

2012; Olea 2013). However, most of these examples used variogram techniques, which 

cannot reproduce complex patterns, discontinuities, and curvilinear shapes (Zhang 2008). 

Multiple-point statistics (mps) proposed by Journel (1992) and extended by Guardiano and 

Srivastava (1992) by the use of a training image (TI), were made practical with SNESIM 
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(Strebelle 2000) and SIMPAT (Arpat and Caers 2007) and FILTERSIM (Zhang et al. 2006) 

algorithms (Wu et al. 2008a). In this work, Stanford Geostatistical Modeling Software’s 

(SGeMS) implementation of FILTERSIM was employed to simulate time-lapsed GIP and 

time-lapsed differences in GIP in the New Castle, Mary Lee/Blue Creek, and Jagger seams. 

FILTERSIM and its SGeMS implementation are discussed in detail in Wu et al. (2008b) and 

in Remy et al. (2009). Therefore, the simulation technique will not be reiterated in this 

paper. However, it is important to mention that the FILTERSIM application has been chosen 

in this work due to strong anisotropies in the data (represented by semivariograms) and also 

its ability to include the faults in the study area and their effects in the simulations, where 

the kriging system of equations would create singularity due to discontinuities.

3.1 FILTERSIM Technique and Its Application in This Work

3.1.1 Generating and Testing Training Images—Geostatistical modeling is based on 

86 GIP data points, whose time-dependent statistics are given in Tables 1 and 2. GIP and 

GIP differences were simulated separately instead of subtracting (or adding) grid cell values 

of realizations to avoid propagation of simulation errors. The spatial data locations are the 

well locations shown in Fig. 2 as full circles with well numbers. For modeling, the data was 

assigned to simulation grids that had 115 × 122 Cartesian grids, in which each grid was 200 

ft in x- and y-directions, respectively, to give a grid area of 0.92 acre. Thus, simulation grids 

had 14,030 grid cells and represented a total area of 12,900 acres shown in Fig. 2.

Multiple-point simulation aims to capture patterns or structures from training images (TI) 

and condition them to local data in pattern classification and simulation. Although TI can be 

conceptual and does not have to honor the data patterns precisely in the FILTERSIM 

application, it is suggested to use realistic training images (Olea 2009). However, there are 

not any strict rules regarding generation of TIs for continuous variables. In this work, the 

aim was for statistical and spatial representation of data and the presence of geological 

features in the 27 TIs that corresponded to each of the cases in Tables 1 and 2. For this 

purpose, 27 TI grids of the same dimensions and grid counts as the simulation grids were 

created. Fault lines were placed into each of the grids as discontinuities based on their 

spatial locations corresponding to Fig. 2. For TI generation, first-order Voronoi 

decomposition was employed as: Let S be a set of n distinct points, si, ∀i ∈ n. The Voronoi 

diagram of S is the partition of the plane into n regions, R(si). A point equal to si is assigned 

to q in R(si) if ||q − si|| < ||q − sj||, for each sj ∈ S, i ≠ j. For equally spaced data in Euclidian 

space, Voronoi decomposition creates square regions. However for random data, the plane S 

is partitioned into polygons (Voronoi regions) in such a way that each region contains 

exactly one generating point and every point in a given region is closer to its generating 

point than to any other. Faults, represented as discontinuities in Voronoi decomposition 

prevented expansion of Voronoi regions beyond fault lines. In this work, Surfer™ 10 

(Golden Software 2012) was used for Voronoi decomposition. Besides being used in many 

applications in computer sciences, geological sciences, and atmospheric sciences (Mackie 

and Cooper 2009), Voronoi decomposition of hard data (spatial GIP and GIP difference 

data) as Voronoi diagrams offers a unique advantage in this work in preparing TIs; as 

explained in the upcoming section (Sect. 3.1.2), K-means clustering was used in filter 

simulations in this work due to its benefits in partitioning the data into clusters for stochastic 
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simulations (Remy et al. 2009). However, the major problem with K-means clustering is that 

it cannot ensure the global optimum results due to the random selection of initial cluster 

centers. Clustering the data using K-means with the help of Voronoi diagrams ensures 

effective selection of initial cluster centers compared to random initialization (Reddy and 

Prasanta 2012).

Figure 3 shows initial GIP and GIP difference (1998–2006) of data and their TIs generated 

for the Jagger seam as examples. All TIs prepared as Voronoi diagrams for each case were 

examined by comparing their statistics with those of actual data using basics statistics and 

Quantile–Quantile (Q–Q) plots. Q–Q plots were prepared between 86 values of actual data 

and 14,030 grid cell data of TIs for each coal seam and for each time-dependent attribute. A 

straight line in Q–Q plots is an indication of equality between the probability distributions 

being compared. Tables 3 and 4 give basic statistics of TI images for comparison with 

statistics of actual data at borehole locations given in Tables 1 and 2. Comparison of 

statistical parameters in these table pairs (1 versus 3, and 2 versus 4) shows that the values in 

these tables for corresponding time-dependent GIPs are very close to each other, indicating 

statistical similarity and representativeness of TIs to the actual data. Q–Q plots of the actual 

data-TI map pairs shown in Fig. 3, as examples, also show that the distributions have similar 

quantile values (Fig. 4A for GIP and B for GIP difference). The inset tables provided in 

these figures show the mean and variance of the original data and the TI data used for Q–Q 

comparisons.

Additionally, spatial aspects of the data-TI pairs were tested for spatial representativeness. 

For this purpose, semivariogram analyses were performed on the data-TI pairs without any 

data transformation. It should be emphasized that filter simulation does not require 

semivariogram modeling. Semivariogram was used here for the sole purpose of comparing 

spatial distributions of actual data with the distribution TI data generated from them. Also, 

since vertical spatial modeling is not sought after for this purpose, horizontal 

semivariograms are appropriate for assessing spatial similarity of data-TI pairs. Figure 5 

shows the isotropic experimental semivariograms calculated using 900 ft lag distance, and 

the analytical models, of the initial GIP data for the Jagger seam and its TI (shown in Fig. 3) 

as an example. The isotropic experimental semivariogram of the data at borehole locations 

were represented with an exponential model (Eq. (1)). The dotted lines in Fig. 5 show the 

total variance in each of the data.

That is,

(1)

where γ(h) is the semivariance, h is the lag, Co is the nugget variance, C is the sill 

contribution, and Ao is the range parameter, which is 1/3 of the effective range (A) in the 

case of exponential model. Effective range, A, is where the sill (C + Co) is within 5 % of the 

asymptote (Gamma Design Software 2008). The analytical model representing spatial data 

at borehole locations had 0.00117 nugget variance (Co) and 0.05040 sill variance (Co + C). 

It had a range parameter (Ao) of 3140.7 ft and an effective range (A) of 9422 ft. The 
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experimental variogram of the TI was calculated with the same parameters as those of the 

borehole-location data, and the analytical model was plotted using same model parameters. 

Figure 5 shows that both actual data and its TI data present similar semivariograms and can 

be closely modeled using the same models. However, as expected, the TI has lower variance 

owing to the large number of data. Similar comparisons presented for Jagger seam’s initial 

GIP at borehole locations and the TI in this section were performed for other data-TI pairs as 

well. It was concluded that the Tls prepared using Voronoi decomposition can represent the 

actual data statistically and spatially, at least for the case study presented in this work.

3.1.2 Implementation of Filter Simulation for This Work—Filter simulation operates 

by capturing features and patterns from TIs by running a set of filters, which are basically 

weights associated with a search template (Wu et al. 2008a). SGeMS implementation of 

FILTERSIM offers three default filters as average filter, gradient filter, and curvature filter 

to create filter scores from TIs, where similar patterns are associated with similar vector 

scores through clustering. These default filters are given as (Remy et al. 2009)

(2)

(3)

(4)

If all is selected, which was the case in this work, these filters operate in each of the 

template directions of the study geometry by sliding the filter nodes. For instance, for a two-

dimensional template of X–Y directions, there will be six filters. In these filter definitions, ni 

is the template size in i direction, which can be X or Y. The term mi is (ni − 1)/2 with a filter 

node offset of αi = −mi, …, +mi. Filters are the crucial elements for creating score maps, 

from which local training patterns are summarized in filter score space. By partitioning filter 

scope space into similar patterns that can be grouped together, pattern prototypes (prot) is 

calculated by point-wise average of all training patterns (pat) that fall into a specific class 

(Remy et al. 2009). For a continuous training image, a prototype associated with search 

template TJ is calculated using

(5)

In this equation, hi is the ith offset location for the filter in the search template TJ, c is the 

number of training replicates within the prototype class, and uj is the center of a specific 

training pattern. The structure and properties of filters, as well as pattern identification and 

clustering methodologies are explained in detail in Remy et al. (2009). One other note of 

interest here regarding the successful implementation of filter simulation procedure, besides 
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representativeness of TIs, is that the pattern identification and prototype building are 

dependent also on template search and simulation parameters. In this work, FILTERSIM 

simulations were conditioned to hard data only and have not been forced to match the TI 

histogram to create realizations. However, simulation parameters including the number of 

clusters, clustering method, search template, and patch dimensions can affect the results. 

Therefore, a deductive reasoning approach was used in such a way that these parameters 

were optimized by trying different combinations and checking the data of Q50 realizations 

against the data of TIs, as well as against the hard data of well locations using Q–Q plots 

(Fig. 4A–C and Fig. 4B–D and their inset tables) and basic statistics (Tables 1 and 3, and 

Tables 2 to 4). Eventually, a two-dimensional search template with 5 cells in x–y directions 

and inner patch dimensions with 3 cells in x–y directions were chosen. Pattern partition was 

performed using K-means clustering. In K-means clustering, the optimal centroid of each 

cluster is associated with specific training patterns based on the distance between patterns 

and cluster centroids (Wu et al. 2008a, 2008b). For this operation, 22 maximum 

initialization clusters and 2 secondary partition clusters were selected. As the distance 

calculation method, filter scores were used. After parameter optimization for FILTERSIM, 

one-hundred realizations for each of the time-lapse GIP and time-lapse GIP difference data 

for each coal seam were generated. This set of simulations was used for analyses of 

uncertainty and distribution of properties in the study area.

3.2 Evaluation of Time-Lapsed Gas-in-Place and Time-Lapsed Gas-in-Place Difference 
Realizations

Filter simulations that use a stochastic approach generated 100 realizations for each of the 

GIP and GIP-change cases for the New Castle, Mary Lee/Blue Creek, and the Jagger seams; 

therefore, in total, 27 × 100 realizations, each having 14,030 grid cell values, were generated 

for all cases to build time-lapsed results. One hundred realizations of each of the 27 cases 

were used to perform probabilistic assessment of GIP and also to rank the realizations to 

determine the ones that represent the Q50 ones as expected maps.

3.2.1 Material Balance Between Simulated Realizations and Cumulative 
Borehole Productions—Before proceeding with evaluations of GIP values in 

realizations from filter simulations and grid cell values within, a global material balance 

check was performed between amount of gas produced from degasification wellbores and 

the amount of GIP reduction in coal seams. Although the gas produced from wells comes to 

the surface from a single point, or grid cell, in reality it sources from a volume around the 

wellbore. Thus, cumulative gas production from the Mary Lee group’s coal seams via 

degasification wells should reflect the amount of GIP reduction in all the Mary Lee group’s 

coals within the study area. For this purpose, GIP and GIP difference realizations of all coals 

were ranked based on cumulative grid cell values and Q5, Q50, and Q95 were found. 

Rankings corresponding to each coal seam were summed together to find cumulative 

methane quantity change between initial and later dates. These values were compared with 

the amount of gas produced from the Mary Lee group by degasification wells. Results are 

given in Figs. 6A and 6B. These figures show that cumulative methane change calculated 

from realizations of GIP and GIP differences are very close. Moreover, and more 

importantly, the values obtained from realizations are very close to wellbore productions 
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independently determined from the field. These results ensure that the material balance and 

the values simulated are correct, and give additional confidence on the simulation results 

beyond basic statistics and the Q–Q plots discussed previously.

3.2.2 Spatial Time-Lapsed Gas-in-Place and Gas-in-Place Change Results with 
Interpretations on the Effect of Faults from Realizations—Realizations that 

correspond to Q50 GIPs for each coal seam at initial, 1998, 2006, and 2011 time periods are 

given in Fig. 7. Fault traces (red lines), corresponding dates during the degasification cycle, 

and the outermost entries that outline the E1–E11 panels (Fig. 2) are shown in these 

realizations as well. The realizations given for initial conditions of coal showed maximum 

GIP amounts that were equal to or more than 2 MMscf, 4 MMscf, and 2 MMscf per 0.92 

acre in the New Castle, Mary Lee/Blue Creek, and Jagger seams, respectively. However, 

locations of the high-methane areas were different in each seam and do not seem to be 

affected by faults. For instance, at the initial state before degasification, areas with high 

methane concentrations were near the E1–E3 panel locations in the New Castle seam, were 

in E5–E6 panels on the Southeast area corner in the Mary Lee/Blue Creek seam, and were 

more evenly distributed in the Jagger seam.

With the start of degasification in the 80s and improvement in the early 90s by drilling 

additional wells, changes in distribution of GIP with time and fault effects became more 

discernible. The realizations representing 1998 in Fig. 7 show that GIP decreased 

significantly in all coal seams and high-methane content areas shrunk in size. For instance, 

in the New Castle seam, the amount of gas in E1–E6 panels as well as E10–E11 panels 

decreased to the 1.6–1.8 MMscf range. In this seam, the high-GIP areas in E1–E3 panels 

almost disappeared, and the high-gas area above the panels and in the northeast corner of the 

area shrunk. Similar changes also occurred in the Jagger seam. However, more discernible 

changes occurred in the Mary Lee/Blue Creek seams. The northeast corner of the area 

outside the faults dramatically decreased in GIP. Also, the area between the faults in the 

southwest area depleted in gas; so did the E1–E11 panel areas. These areas correspond to the 

locations of highly productive wells and the locations where coal reservoir properties 

favored high gas production using vertical wells (Karacan 2013a). GIP realizations given in 

Fig. 7 for 2006 and 2011 for the New Castle, Mary Lee/Blue Creek, and Jagger coal seams 

show that GIP continued to decrease, especially in panel areas, between the faults in the 

southwest and southeast ends of the E9 and E10–E11 panels due to active wells.

Time-interval GIP realizations are shown in Fig. 8. The spatial GIP change in coal seams 

between the initial state and 1998 discussed in the previous paragraph correlate well with the 

Q50 realizations from simulations of GIP difference data. These realizations showed that the 

region outside of the faults in the northeast, and the E1–E6 panel areas were where most 

GIP-reductions due to degasification occurred. The northeast faults created a region 

separated from rest of the study area, indicating compartmentalizing of degasification. In 

this figure, Q50 realizations of 1998–2006 and 2006–2011 GIP changes show that the E1–

E11 panel area continued to deplete in GIP in all coals, at a slower rate. However, there was 

no change in GIP outside of the northeast faults because boreholes had stopped production 

after 1998. Similarly, there was no change in GIP around the southeast corner of the study 

area in 2006–2011 possibly for the same reason.
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Finally, the GIP in the coal seams in 2015 and the GIP change in these coal seams during 

2011–2015 were simulated for forecasting purposes. The GIP values corresponding to 2015 

were calculated using the reservoir parameters obtained from production forecasting; that is, 

once past production of wells are successfully history-matched, the resulting analytical 

function can be extended into the future to predict production and the state of the reservoir. 

Figure 9 shows Q50 realizations of these simulations. The GIP change was expected to be 

uniform except in the areas where degasification had stopped and was isolated by faults. 

These areas are shown in white in the lower row for the New Castle seam, Mary Lee/Blue 

Creek seam, and the Jagger seam. The 2015 maximum forecasted GIP will be around 1 

MMscf per 0.92 acre in the New Castle seam to the left of the 3rd fault line from the left. 

Thus, mine workings in this region will be prone to increased emissions from the mine roof. 

In the Mary Lee/Blue Creek seam, forecasts show areas in the 2.5–3 MMscf per 0.92 acre in 

the same above region, within the E1–E6 panel area and also at the southeast corner of the 

area. These regions will likely create more emissions from the mining face. The Jagger 

seam, on the other hand, will be more uniform in methane quantity and floor emissions will 

be expected to be spatially constant.

3.2.3 Statistical and Quantile Analysis of Gas-in-Place Within Realizations—
The histograms given in Fig. 10 show cumulative GIPs, calculated by summing 14,030 grid 

values, based on 100 realizations for each date. These histograms show that each coal seam 

has different GIP within the 12,900-acre area shown in Fig. 2. Moreover, they show that 

GIPs in coal seams decrease progressively over time from their initial state at the start of 

degasification until 2011. The GIPs are forecast to further decrease as a result of continued 

degasification into 2015.

The histograms in Fig. 10 show that the Mary Lee/Blue Creek seam had the highest initial 

cumulative GIP varying between 37.5 Bcf and 42.5 Bcf. If there had been no degasification, 

these seams would generate an average 3 MMscf of methane per acre of mining. As a result 

of degasification, cumulative GIP decreased to an average of 27 Bcf in 2011 (~35 % 

decrease) and is expected to decrease to 24 Bcf (an additional 7 % decrease) in 2015. 

Similar observations can be made for the New Castle and Jagger seams, which are the 

source of roof and floor emissions, respectively. Thus, from a mining-emissions point of 

view, these three major seams should be interpreted together. The histograms in Fig. 10 

show these three major seams are within the direct emission interval during mining with an 

average of 72 Bcf of methane within the study area initially. Without degasification, this 

would correspond to 5.6 MMscf per acre of mining. With degasification, the total GIP in 

these three coal seams decreased significantly to 56 Bcf (4.3 MMscf per acre) until 1998, 

and continued to decrease at a slower pace to 46 Bcf (3.6 MMscf per acre) in 2011 and to 43 

Bcf (3.3 MMscf per acre) in 2015. Statistical results from these distributions are given in 

Table 5 to assess uncertainty. In order to determine these statistical measures and Q5, Q50, 

and Q95, the cumulative GIPs in the model area were determined by summing the GIP of 

14,030 cells in each of the 100 realizations of each date. Next, cumulative GIP values 

calculated for each realization were ranked to determine the GIP values and corresponding 

realizations that give 5 %, 50 %, and 95 % of the distribution. Similar analyses have been 

performed for GIP difference realizations between consecutive dates as well. Table 5 
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quantitatively shows that cumulative GIPs in all coal seams and their decrease with time. 

For instance, the Q50 of cumulative GIPs in the New Castle seam, Mary Lee/Blue Creek 

seam, and Jagger seam are expected to decrease from initial amounts of 14.6 Bcf, 39.9 Bcf, 

and 16.9 Bcf, to 9.5 Bcf, 24.3 Bcf, and 10.7 Bcf in 2015, respectively. These values 

correspond to 395 Mscf, 1.2 MMscf, and 480 Mscf reductions in possible mine emissions 

from the same coals per acre of mining, respectively, as the result of degasification.

4 Summary and Conclusions

In this work, reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/

Blue Creek seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from 

production history matching and production forecasting of degasification wellbores. These 

data were combined with isotherm and other important data to compute GIP and its change 

with time at borehole locations. Point-wise GIP data were used to generate time-lapsed 

training images using Voronoi decomposition. Filter-based multiple-point geostatistical 

simulations were used after optimizing pattern partitioning and prototype generation 

parameters. Performed simulations were used for mapping time-lapsed methane quantities as 

well as their uncertainties within the study area. Results showed that TIs generated using 

Voronoi decomposition on training image grids of the same size as grids of planned 

simulations can create data patterns and their statistics successfully. Also, optimizing 

FILTERSIM parameters prior to simulations using Q–Q plots improve the final results of 

filter simulation.

Quantitative results of modeling showed that the cumulative methane quantity within coals 

in the study area was reduced from an initial ~73 Bcf (median) to ~46 Bcf as of 2011. It is 

forecasted that there will be an additional ~2 Bcf reduction in methane quantity by 2015. 

The Q50 of cumulative GIPs in the New Castle seam, Mary Lee/Blue Creek seam, and 

Jagger seam are expected to decrease from initial amounts of 14.6 Bcf, 39.9 Bcf, and 16.9 

Bcf, to 9.5 Bcf, 24.3 Bcf, and 10.7 Bcf by 2015, respectively. These values correspond to 

395 Mscf, 1.2 MMscf, and 480 Mscf reductions in possible mine emissions from the same 

coals per acre of mining, respectively, as the result of degasification. Quantitative results of 

simulations compared with wellbore productions showed that material balance of GIP was 

very close for each of the cases suggesting the accuracy of the modeling methodology given 

in this paper and reliability of the presented GIP results. The GIP values, spatial 

distributions, and the uncertainties calculated for different quantile criteria are not only 

important for generic interest and for locating future degasification boreholes, but they are 

also crucially important for estimating methane emissions from the working face, floor, and 

roof of the operating mine. These methane emissions and associated uncertainties have 

direct relations with the amount of ventilation air to be provided to the mine, and thus they 

are important for the health and safety of the underground workforce. For instance, based on 

Q50 results, ~3.1 MMscf potential methane emission from all three coal layers will require 

310 MMscf air to dilute it to ~1 % in mining of each 0.92-acre area.
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Fig. 1. 
A representative stratigraphic column of the Mary Lee group of coals of the Upper Pottsville 

formation. The figure also shows minimum, mean, and maximum depths and inter-seam 

intervals within the study area
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Fig. 2. 
A plan view and dimensions of the study area with wellbore locations, mine outline, and 

major geologic structures. Red lines show normal faults mapped in the area and directions 

and magnitudes of throw. Locations of vertical boreholes and their identification numbers 

are also shown (filled circles) in this figure
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Fig. 3. 
Spatial locations of data and faults for initial and difference (1998–2006) GIPs for the 

Jagger seam and the TIs generated for these cases. Easting and Northing coordinates are 

Alabama State coordinates of the study area. Twenty seven TIs were prepared to simulate 

each for the cases given in Tables 1 and 2
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Fig. 4. 
Q–Q plots of actual data and TIs prepared for initial and difference (1998–2006) GIPs for 

the Jagger seam (A and B) and Q–Q plots of Q50 realization data and TIs of the same 

attributes (C and D)
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Fig. 5. 
Comparison of the experimental and analytical semivariograms of Jagger seam’s initial 

methane quantity from borehole locations and its TI given in Fig. 3
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Fig. 6. 
Cumulative methane produced from wellbores compared with the Q5, Q50, and Q95 of 

methane quantity change determined using time-lapsed GIP realizations (A) and time-lapsed 

GIP change realizations (B) between initial and later dates
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Fig. 7. 
GIP realizations (Q50) of filter simulation results for each coal seam between initial and 

2011. Red lines are fault lines and black lines are the outlines of E1–E11 panels
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Fig. 8. 
GIP change realizations (Q50) of coal seams within consecutive dates. Red lines are fault 

lines and black lines are the outlines of E1–E11 panels
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Fig. 9. 
Forecasted GIPs in 2015 and GIP change between 2011 and 2015 in coal seams. Color 

scales are the same as in Fig. 7 and Fig. 8
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Fig. 10. 
Cumulative GIP distributions, based on 100 realizations, in each coal seam from initial 

conditions to later dates
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